3.352 \(\int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^3} \, dx\)

Optimal. Leaf size=102 \[ \frac {(2 B+3 C) \tan (c+d x)}{15 d \left (a^3 \sec (c+d x)+a^3\right )}+\frac {(2 B+3 C) \tan (c+d x)}{15 a d (a \sec (c+d x)+a)^2}+\frac {(B-C) \tan (c+d x)}{5 d (a \sec (c+d x)+a)^3} \]

[Out]

1/5*(B-C)*tan(d*x+c)/d/(a+a*sec(d*x+c))^3+1/15*(2*B+3*C)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^2+1/15*(2*B+3*C)*tan(
d*x+c)/d/(a^3+a^3*sec(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {4052, 12, 3796, 3794} \[ \frac {(2 B+3 C) \tan (c+d x)}{15 d \left (a^3 \sec (c+d x)+a^3\right )}+\frac {(2 B+3 C) \tan (c+d x)}{15 a d (a \sec (c+d x)+a)^2}+\frac {(B-C) \tan (c+d x)}{5 d (a \sec (c+d x)+a)^3} \]

Antiderivative was successfully verified.

[In]

Int[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(a + a*Sec[c + d*x])^3,x]

[Out]

((B - C)*Tan[c + d*x])/(5*d*(a + a*Sec[c + d*x])^3) + ((2*B + 3*C)*Tan[c + d*x])/(15*a*d*(a + a*Sec[c + d*x])^
2) + ((2*B + 3*C)*Tan[c + d*x])/(15*d*(a^3 + a^3*Sec[c + d*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3794

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3796

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b*Cot[e + f*x]*(a
+ b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(m + 1)/(a*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(
m + 1), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && IntegerQ[2*m]

Rule 4052

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_))^(m_), x_Symbol] :> -Simp[((a*A - b*B + a*C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] +
Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*(2*m + 1) + (b*B*(m + 1) - a*(A*(m + 1) - C*
m))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{(a+a \sec (c+d x))^3} \, dx &=\frac {(B-C) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}+\frac {\int \frac {a (2 B+3 C) \sec (c+d x)}{(a+a \sec (c+d x))^2} \, dx}{5 a^2}\\ &=\frac {(B-C) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}+\frac {(2 B+3 C) \int \frac {\sec (c+d x)}{(a+a \sec (c+d x))^2} \, dx}{5 a}\\ &=\frac {(B-C) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}+\frac {(2 B+3 C) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac {(2 B+3 C) \int \frac {\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{15 a^2}\\ &=\frac {(B-C) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}+\frac {(2 B+3 C) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac {(2 B+3 C) \tan (c+d x)}{15 d \left (a^3+a^3 \sec (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.38, size = 70, normalized size = 0.69 \[ \frac {\tan \left (\frac {1}{2} (c+d x)\right ) \sec ^4\left (\frac {1}{2} (c+d x)\right ) (6 (2 B+3 C) \cos (c+d x)+(7 B+3 C) \cos (2 (c+d x))+11 B+9 C)}{120 a^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(a + a*Sec[c + d*x])^3,x]

[Out]

((11*B + 9*C + 6*(2*B + 3*C)*Cos[c + d*x] + (7*B + 3*C)*Cos[2*(c + d*x)])*Sec[(c + d*x)/2]^4*Tan[(c + d*x)/2])
/(120*a^3*d)

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 93, normalized size = 0.91 \[ \frac {{\left ({\left (7 \, B + 3 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (2 \, B + 3 \, C\right )} \cos \left (d x + c\right ) + 2 \, B + 3 \, C\right )} \sin \left (d x + c\right )}{15 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

1/15*((7*B + 3*C)*cos(d*x + c)^2 + 3*(2*B + 3*C)*cos(d*x + c) + 2*B + 3*C)*sin(d*x + c)/(a^3*d*cos(d*x + c)^3
+ 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

giac [A]  time = 1.59, size = 75, normalized size = 0.74 \[ \frac {3 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 10 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 15 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 15 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{60 \, a^{3} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="giac")

[Out]

1/60*(3*B*tan(1/2*d*x + 1/2*c)^5 - 3*C*tan(1/2*d*x + 1/2*c)^5 - 10*B*tan(1/2*d*x + 1/2*c)^3 + 15*B*tan(1/2*d*x
 + 1/2*c) + 15*C*tan(1/2*d*x + 1/2*c))/(a^3*d)

________________________________________________________________________________________

maple [A]  time = 0.83, size = 64, normalized size = 0.63 \[ \frac {\frac {\left (B -C \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}-\frac {2 B \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}+B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+C \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d \,a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x)

[Out]

1/4/d/a^3*(1/5*(B-C)*tan(1/2*d*x+1/2*c)^5-2/3*B*tan(1/2*d*x+1/2*c)^3+B*tan(1/2*d*x+1/2*c)+C*tan(1/2*d*x+1/2*c)
)

________________________________________________________________________________________

maxima [A]  time = 0.46, size = 115, normalized size = 1.13 \[ \frac {\frac {B {\left (\frac {15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {10 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}} + \frac {3 \, C {\left (\frac {5 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}}}{60 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

1/60*(B*(15*sin(d*x + c)/(cos(d*x + c) + 1) - 10*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(cos(d
*x + c) + 1)^5)/a^3 + 3*C*(5*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/a^3)/d

________________________________________________________________________________________

mupad [B]  time = 2.86, size = 66, normalized size = 0.65 \[ \frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (15\,B+15\,C-10\,B\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+3\,B\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-3\,C\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\right )}{60\,a^3\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(a + a/cos(c + d*x))^3,x)

[Out]

(tan(c/2 + (d*x)/2)*(15*B + 15*C - 10*B*tan(c/2 + (d*x)/2)^2 + 3*B*tan(c/2 + (d*x)/2)^4 - 3*C*tan(c/2 + (d*x)/
2)^4))/(60*a^3*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {B \sec {\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {C \sec ^{2}{\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**3,x)

[Out]

(Integral(B*sec(c + d*x)/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x) + Integral(C*sec(c + d
*x)**2/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x))/a**3

________________________________________________________________________________________